Ordered topological spaces and the coproduct of bounded distributive lattices
نویسندگان
چکیده
منابع مشابه
Representation of Distributive Lattices by Means of Ordered Stone Spaces
1. Introduction Stone, in [8], developed for distributive lattices a representation theory generalizing that for Boolean algebras. This he achieved by topologizing the set X of prime ideals of a distributive lattice A (with a zero element) by taking as a base {P a : aeA} (where P a denotes the set of prime ideals of A not containing a), and by showing that the map a i-> P a is an isomorphism re...
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملCoproducts of Bounded Distributive Lattices
Let LM denote the coproduct of the bounded distributive lattices L and M. At the 1981 Bann Conference on Ordered Sets, the following question was posed: What is the largest class L of nite distributive lattices such that, for every non-trivial Boolean lattice B and every L 2 L, B L = B L 0 implies L = L 0 ? In this note, the problem is solved.
متن کاملfuzzy ordered sets and duality for finite fuzzy distributive lattices
the starting point of this paper is given by priestley’s papers, where a theory of representation of distributive lattices is presented. the purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. in this way, some results of priestley’s papers are extended. in the main theorem, we show that the category of finite fuzzy priestley space...
متن کاملCoproducts of bounded distributive lattices: cancellation
Let L ∗ M denote the coproduct of the bounded distributive lattices L and M . At the 1981 Banff Conference on Ordered Sets, the following question was posed: What is the largest class L of finite distributive lattices such that, for every non-trivial Boolean lattice B and every L ∈ L, B ∗ L = B ∗ L′ implies L = L′? In this note, the problem is solved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1976
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-36-1-27-35